Advertise here with Carbon Ads

This site is made possible by member support. โค๏ธ

Big thanks to Arcustech for hosting the site and offering amazing tech support.

When you buy through links on kottke.org, I may earn an affiliate commission. Thanks for supporting the site!

kottke.org. home of fine hypertext products since 1998.

๐Ÿ”  ๐Ÿ’€  ๐Ÿ“ธ  ๐Ÿ˜ญ  ๐Ÿ•ณ๏ธ  ๐Ÿค   ๐ŸŽฌ  ๐Ÿฅ”

kottke.org posts about Lockheed Martin

Lockheed Martin claims fusion reactor breakthrough

Lockheed Martin is in the process of developing a compact fusion reactor they say could revolutionize the world’s energy industry.

Dubbed the compact fusion reactor (CFR), the device is conceptually safer, cleaner and more powerful than much larger, current nuclear systems that rely on fission, the process of splitting atoms to release energy. Crucially, by being “compact,” Lockheed believes its scalable concept will also be small and practical enough for applications ranging from interplanetary spacecraft and commercial ships to city power stations. It may even revive the concept of large, nuclear-powered aircraft that virtually never require refueling-ideas of which were largely abandoned more than 50 years ago because of the dangers and complexities involved with nuclear fission reactors.

The key difference in Lockheed’s approach seems to be the configuration of the magnetic field containing the reaction:

The CFR will avoid these issues by tackling plasma confinement in a radically different way. Instead of constraining the plasma within tubular rings, a series of superconducting coils will generate a new magnetic-field geometry in which the plasma is held within the broader confines of the entire reaction chamber. Superconducting magnets within the coils will generate a magnetic field around the outer border of the chamber. “So for us, instead of a bike tire expanding into air, we have something more like a tube that expands into an ever-stronger wall,” McGuire says. The system is therefore regulated by a self-tuning feedback mechanism, whereby the farther out the plasma goes, the stronger the magnetic field pushes back to contain it. The CFR is expected to have a beta limit ratio of one. “We should be able to go to 100% or beyond,” he adds.

Charles Seife, who wrote a book about the history of fusion, is skeptical of Lockheed’s claims.

This week, Lockheed Martin supposedly managed to achieve a “breakthrough” in nuclear fusion that has gotten a lot of media attention. As Charles Seife points out, it did so “without having built a prototype device that, you know, fuses things on an appreciable scale. It’s a stunning assertion, even by fusion-research standards. But a quick look at the defense contractor’s ambitious plan-a working reactor in five years-already shows the dream fraying around the edges. A year and a half ago, the company promised that fusion was four years away, meaning that the schedule is already slipping. Negative one years of progress in 20 months is, sadly, business as usual for fusion. At this rate, it’ll take Lockheed Martin at least a decade before the natural endpoint: desperately spinning victory out of an underwhelming result generated by a machine whose performance comes nowhere near predictions-and which brings us no closer to actually generating energy from a fusion reaction.”